Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart.
نویسندگان
چکیده
At a resting pulse rate the heart consumes almost twice-as much oxygen per gram tissue as the brain and more than 43 times more than resting skeletal muscle (1). Unlike skeletal muscle, cardiac muscle cannot sustain anaerobic metabolism. Balancing oxygen demand with availability is crucial to cardiac function and survival, and regulated gene expression is a critical element of maintaining this balance. We investigated the role of the hypoxia-inducible transcription factor HIF-1alpha in maintaining this balance under normoxic conditions. Cardiac myocyte-specific HIF-1alpha gene deletion in the hearts of genetically engineered mice caused reductions in contractility, vascularization, high-energy phosphate content, and lactate production. This was accompanied by altered calcium flux and altered expression of genes involved in calcium handling, angiogenesis, and glucose metabolism. These findings support a central role for HIF-1alpha in coordinating energy availability and utilization in the heart and have implications for disease states in which cardiac oxygen delivery is impaired. Heart muscle requires a constant supply of oxygen. When oxygen supply does not match myocardial demand cardiac contractile dysfunction occurs, and prolongation of this mismatch leads to apoptosis and necrosis. Coordination of oxygen supply and myocardial demand involves immediate adaptations, such as coronary vasodilatation, and longer-term adaptations that include altered patterns of gene expression (2-4). How the expression of multiple genes is coordinated with oxygen availability in the heart and the impact of oxygen-dependent gene expression on cardiac function are insufficiently understood. Further elucidating these relationships may help clarify the molecular pathology of various cardiovascular disease states, including ischemic cardiomyopathy and myocardial hibernation (5, 6).
منابع مشابه
Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1.
Homocysteine (HCY) activated mitochondrial matrix metalloproteinase-9 and led to cardiomyocyte dysfunction, in part, by inducing mitochondrial permeability (MPT). Treatment with MK-801 [N-methyl-d-aspartate (NMDA) receptor antagonist] ameliorated the HCY-induced decrease in myocyte contractility. However, the role of cardiomyocyte NMDA-receptor 1 (R1) activation in hyperhomocysteinemia (HHCY) l...
متن کاملCardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha.
OBJECTIVES Previous studies have revealed the essential role of hypoxia-inducible factor-1alpha (HIF-1alpha), a basic helix-loop-helix transcription factor, in cardiovascular development. We attempted to further characterize the underlying mechanisms resulting in abnormal cardiogenesis and defective angiogenesis in mice deficient for HIF-1alpha (HIF-1alpha(-/-)). METHODS We analyzed cardiovas...
متن کاملHypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury.
Hypoxia inducible factor-1 (HIF-1) regulates changes in transcription of key genes such as inducible NO synthase (iNOS) in hypoxic/ischemic environments. In normoxia, HIF-1 activation is controlled by HIF-1alpha-prolyl 4-hydroxylases, which target HIF-1alpha for ubiquitination and proteasomal degradation. We hypothesized that normoxic HIF-1 preservation could attenuate cardiac ischemia/reperfus...
متن کاملConditional HIF-1α Expression Produces a Reversible Cardiomyopathy
BACKGROUND The response to hypoxia in tissues is regulated by the heterodimeric transcription factor Hypoxia Inducible Factor-1 (HIF-1). METHODOLOGY/PRINCIPAL FINDINGS We have created a strain of mice with inducible cardiomyocyte-specific expression of a mutated, oxygen-stable, form of HIF-1alpha. Cardiac function steadily decreased with transgene expression, but recovered after the transgene...
متن کاملHIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia.
Adaptation to hypoxia is regulated by hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor consisting of an oxygen-regulated alpha subunit and a constitutively expressed beta subunit. Although HIF-1 is regulated mainly by oxygen tension through the oxygen-dependent degradation of its alpha subunit, in vitro it can also be modulated by cytokines, hormones and genetic alterati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2004